Publications

  1. S. Nabil+, M. Arshad+, K. Kannimuthu, M. Rashid, H.S. Shiran, M. Kibria and M. A. Khan*, “The Hidden Dilemma of Alkaline Electrocatalysis: Acid Base Chemistry and the Economic Implication of Carboxylate Production”, Nat Catalysis, In Press (2024)
  2. A. Joshi, L. Lefsrud, M. Tufail, M.A. Khan, “Quantitative risk assessment of a gaseous hydrogen refueling station in Canada”, Journal of Loss Prevention, Under Review (2023)
  3. Al-Attas, T., Khan, M. A., Goncalves, T. J., Yasri, N. G., Roy, S., Zeraati, A. S., … & Kibria, M. G. (2023). Bioinspired multimetal electrocatalyst for selective methane oxidation. Chemical Engineering Journal, 474, 145827.
  4. Hussain, S., Daneshmand, S. V., Zareipour, H., Layzell, D., & M.A. Khan (2022, November). Optimal Sizing of a Stand-alone Renewable-Powered Hydrogen Fueling Station. In 2022 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC) (Vol. 6, pp. 1-6). IEEE.
  5. M.A. Khan, S. K. Nabil, T. A. Al-Attas, S. Roy, M.M. Rahman, Stephen Larter, P. M. Ajayan, Jinguang Hu* and Md Golam Kibria*, “Zero-crossover electrochemical CO2 reduction to ethylene with co-production of valuable chemicals”, Chem Catalysis, https://doi.org/10.1016/j.checat.2022.06.018, (2022)
  6. M.A. Khan, T. Al-Attas, S. Roy, M.M. Rahman, N. Ghaffour, V. Thangadurai, S. Larter, J. Hu, P. M. Ajayan, and M.G. Kibria*, “Seawater Splitting for Hydrogen Production: A Solution Looking for a Problem?”, Energy Environmental Science, https://doi.org/10.1039/D1EE00870F, (2021)
  7. M.Wang, I. Mohsin, M.A. Khan, J. Wicks, A. H. Ip, K. Z. Sumon, C. T. Dinh, E. H. Sargent*, I. D. Gates, and Md Golam Kibria*, “Can Sustainable Ammonia Synthesis Pathways Compete with Fossil-fuel Based Haber-Bosch Processes?”, Energy Environmental Science, https://doi.org/10.1039/D0EE03808C, (2021)
  8. M. A. Adnan+, M.A. Khan+, P. M. Ajayan, M. M. Rahman, Jinguang Hu*, and Md Golam Kibria*, “Transition pathways towards net-zero emissions methanol production”, Green Chemistry, https://doi.org/10.1039/D1GC01973B,  (2021) (+Equal contribution)
  9. M.A. Khan*, I. Al-Shankiti, A. Ziani and H. Idriss* et al., “Demonstration of green hydrogen production using solar energy at 28% efficiency and evaluation of its economic viability”, Sustainable Energy & Fuels, https://doi.org/10.1039/D0SE01761B, (2021)
  10. U. Nwosu, A. Wang, B. Palma, H.Zhao, M.A. Khan, Md Kibria and Jinguang Hu*, “Selective biomass photo-reforming for valuable chemicals and fuels: a critical review”, Renewable & Sustainable Energy Reviews, https://doi.org/10.1016/j.rser.2021.111266, (2021)
  11. I. Majeed, M. Faizan, M.A. Khan, M. Imran, Hassan Ali, M.A. Nadeem*, “CdS nanorods supported copper-nickel hydroxide for hydrogen production under direct sunlight”, Journal of Environmental Chemical Engineering, https://doi.org/10.1016/j.jece.2021.105670, (2021)
  12. M. A. Nadeem, M. A. Khan, A. Ziani, and H. Idriss*, “An Overview of the Photocatalytic Water Splitting over suspended Particles”, Catalysts, https://doi.org/10.3390/catal11010060, (2021)
  13. → M.A. Khan, Tareq A. Al-Attas, Nael G. Yasri, Heng Zhao, Stephen Larter, Jinguang Hu* and Md Golam Kibria*, “Techno-economic analysis of a biomass electrolysis pathway for coproduction of hydrogen and value-added chemicals”, Sustainable Energy & Fuels, https://doi.org/10.1039/D0SE01149E, (2020)
  14. Xinxing Wu, Heng Zhao, M.A. Khan, Partha Maity, Tareq Al-Attas, Omar F Mohammed, Md Golam Kibria*, Jinguang Hu*, “Sunlight-Driven Biomass photo-refinery for coproduction of Sustainable Hydrogen and Value-Added Biochemicals”, ACS Sustainable Chemistry and Engineering, https://doi.org/10.1021/‌acssuschemeng.0c06282, (2020)
  15. M.A. Khan, I. Al-Shankiti, A. Ziani, N. Wehbe and Hicham Idriss*, “A Stable Integrated Photoelectrochemical Reactor for H2 Production from Water Attains a Solar‐to‐Hydrogen Efficiency of 18 % at 15 Suns and 13 % at 207 Suns”, Angewandte Chemie Intl Edition, https://doi.org/10.1002/‌anie.202002240, (2020)
  16. A. Ziani, I. Al-Shankiti, M. A. Khan*, and H. Idriss*, “Integrated Photo-Electrocatalytic (PEC) Systems for Water Splitting to Hydrogen and Oxygen under Concentrated Sunlight: Effect of Internal Parameters on Performance”, Energy & Fuels, https://doi.org/10.1021/acs.energyfuels.0c02481, (2020) [IF: 3.4]
  17. M.A. Khan*, L. Braic, Y. AlSalik and H. Idriss*, “Growth of epitaxial strontium titanate films on germanium using pulsed laser deposition”, Applied surface science, https://doi.org/10.1016/j.apsusc.2020.148601, (2020)
  18. M.A. Khan, P. Varadhan, V. Ramalingam, Hui-Chun Fu, H. Idriss* and Jr-Hau He*, “Importance of Oxygen measurements in PEC water splitting reactions”, ACS Energy Letters, https://doi.org/10.1021/‌acsenergylett.9b02151, (2019)
  19. Julián A. Moreno, M.A. Khan*, Giovanni Marinaro, Maher Al-Oufi, Jorge A. Holguín, Boon Ooi, Hicham Idriss, and Jürgen Kosel, “Growth of Ordered Iron Oxide Nanowires for Photoelectrochemical Water Oxidation”, ACS Applied Energy Materials, https://doi.org/10.1021/acsaem.9b01343, (2019)
  20. M.A. Khan*, P. Maity, M. Al-Oufi, I.K. Al-Howaish, and H. Idriss*, “Electron Transfer of the Metal/Semiconductor System in Photocatalysis”, Journal Physical Chemistry C, https://doi.org/10.1021/‌acs.jpcc.8b03741, (2019)
  21. M. N. Almadhoun, M. A. Khan, K. Rajab, J. Buriak* and H. N. Alshareef*, “UV-induced ferroelectric phase formation in PVDF films”, Advanced Electronic Materials, https://doi.org/10.1002/aelm.201800363, (2018) [IF: 6.6]
  22. T. T. Isimjan*, S. Rasul, M.A. Khan, I. K. Alhowaish and T. Ahmed, “Rational Design of Pd-TiO2/g-C3N4 Heterojunction with Enhanced Photocatalytic Activity Through Interfacial Charge Transfer”, Clean Energy, https://doi.org/10.1093/ce/zky021, (2018)
  23. M.A. Khan, M. Al-Oufi, A. Toseef, M. A. Nadeem, and H. Idriss*, “Comparing the reaction rates of plasmonic gold and non-plasmonic palladium on photocatalytic hydrogen production”, Catalysis Letters, https://doi.org/10.1007/s10562-017-2197-z, (2018)
  24. M.A. Khan, L. Sinatra, M. Al-Oufi, O. M. Bakr and H. Idriss*, “Evidence of Plasmonic Induced Photocatalytic Hydrogen Production on Pd/TiO2 Upon Deposition on Thin Films of Gold”, Catalysis Letters, https://doi.org/10.1007/s10562-017-1998-4, (2017)
  25. M.A. Khan and H. Idriss*, “Advances in plasmon enhanced up-conversion luminescence phenomena and their possible effect on light harvesting”, WIREs Energy and Environment, https://doi.org/‌10.1002/wene.254, (2017)
  26. M.A. Khan, M.A. Nadeem and H.Idriss*, “Ferroelectric polarization effect on surface chemistry and photocatalytic activity”, Surface Science Reports, https://doi.org/10.1016/j.surfrep.2016.01.001, (2016)
  27. M.A. Khan, J.A.Caraveo-Frescas and H.N.Alshareef*, “Hybrid Dual Gate p-type Ferroelectric Memory for Multilevel Information Storage”, Organic Electronics, https://doi.org/10.1016/j.orgel.2014.10.034, (2015)
  28. M.A. Khan, M. Al-Oufi, A. Tossef, Y. Al-Salik and H. Idriss, “On the role of CoO in CoOx/TiO2 for photocatalytic hydrogen production from water in the presence of glycerol”, Catalysis, Structure & Reactivity, https://doi.org/10.1080/2055074X.2015.1124191, (2015)
  29. M.A. Khan, U. S. Bhansali, M. N. Almadhoun, I. N. Odeh, Dongkyu Cha, and H.N. Alshareef*, “High‐Performance Ferroelectric Memory Based on Phase‐Separated Films of Polymer Blends”, Advanced Functional Materials, https://doi.org/10.1002/adfm.201302056, (2014)
  30. J. A. Caraveo-Frescas+, M. A. Khan+ and H. N. Alshareef*, “Polymer Ferroelectric Field-Effect Memory Device with SnO Channel Exhibits Record Hole Mobility”, Nature Scientific Reports, https://doi.org/‌10.1038/srep05243, (2014) (+Equal contribution)
  31. A. N. Hanna, U. S. Bhansali, M.A. Khan and H. N. Alshareef*, “Characterization of current transport in ferroelectric polymer devices”, Organic Electronics, https://doi.org/10.1016/j.orgel.2013.10.009, (2014)
  32. M.A. Khan, U. S. Bhansali, Dongkyu Cha, and H. N. Alshareef, “All-polymer bistable resistive memory device based on nanoscale phase-separated PCBM-ferroelectric blends”, Advanced Functional Materials, https://doi.org/10.1002/adfm.201202724, (2013)
  33. S. R. Sarath Kumar, Pradipta K. Nayak, M. N. Hedhili, M. A. Khan, and H. N. Alshareef*, “In situ growth of p and n-type graphene thin films & diodes by pulsed laser deposition”, Applied Phys Letters, https://doi.org/10.1063/1.4829356, (2013)
  34. U. S. Bhansali, M.A. Khan and H. N. Alshareef*, “Metal-free, single-polymer resistive memory devices on flexible substrates”, ACS Nano, https://doi.org/10.1021/nn403873c, (2013)
  35. U. S. Bhansali, M.A. Khan and H. N. Alshareef*, “Organic ferroelectric memory devices with inkjet-printed electrodes on flexible substrates”, Microelectronics Engr, https://doi.org/10.1016/j.mee.2012.12.024, (2013) [IF: 1.8]
  36. M.A. Khan, U. S. Bhansali, and H. N. Alshareef*, “High performance non-volatile organic ferroelectric memory on banknotes”, Advanced Materials, https://doi.org/10.1002/adma.201200626, (2012)
  37. U. S. Bhansali, M.A. Khan and H. N. Alshareef*, “Electrical performance of polymer ferroelectric capacitors fabricated on plastic substrate using transparent electrodes”, Organic Electronics, https://doi.org/‌10.1016/j.orgel.2012.04.026, (2012)
  38. M.A. Khan U. S. Bhansali, X. X. Zhang, M. M. Saleh, I. Odeh, and H. N. Alshareef*, “Doped polymer electrodes for high performance ferroelectric capacitors on plastic substrates”, Applied Physics Letters, https://doi.org/10.1063/1.4757426, (2012) [IF: 3.6]
  39. M.A. Khan, U. S. Bhansali, and H. N. Alshareef*, “Fabrication and Characterization of all-polymer, transparent ferroelectric capacitors on flexible substrates”, Organic Electronics, https://doi.org/10.1016/‌j.orgel.2011.08.032, (2011)
  40. M.A. Khan, M.A. Mukaddam, and U. Schwingenschlögl*, “Buckled graphene: Study based on density functional theory”, Chemical Phys. Letters, https://doi.org/10.1016/j.cplett.2010.08.059, (2010)